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Abstract

We show experimentally that people undervalue options they find complex. We document this phenomenon
for tasks as diverse as belief updating, visual perception, and compound risk. This behavior is incompatible
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ies. At a broad level, our results suggest that individual preferences toward complexity matter in cognitive
models. At a narrower level, our paper informs the literature on non-Bayesian updating, which overlooks
complexity aversion, and the connection between compound lottery and ambiguity aversion, which, we show,
holds primarily for subjects who find compound lotteries complex.
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1 Introduction

We show experimentally that most people undervalue options they find complex. We document this
phenomenon in three large-scale experiments for diverse tasks: belief updating, visual perception,
and compound risk. The behavior we document is incompatible with Expected Utility, even when
accounting for risk aversion, incorrect beliefs, or inattention. Instead, it suggests that individuals
dislike the cognitive uncertainty they experience with complexity in a way reminiscent of ambiguity
aversion and caution. In line with this interpretation, we show that aversion to complexity increases
when cognitive uncertainty and ambiguity aversion are both higher.
At a broad level, our results demonstrate how most individuals react with caution in the face

of complexity, giving lower values to complex options. Because our effects are substantial in mag-
nitude, they suggest this is an important aspect of individual choices. More narrowly, our results
inform the literature on non-Bayesian updating, which in most cases overlooks complexity aversion,
and the connection between compound-risk and ambiguity aversion.
Complexity has long been recognized as an important factor in decision-making by several

literatures. Our results relate to and connect many of these strands. A large literature studies infor-
mation acquisition and rational (in)attention, while other papers in cognitive sciences focus on how
complexity, measured by cognitive uncertainty and confidence, may generate attenuation towards
the prior. Yet, virtually all these approaches take individuals to be Expected Utility maximizers
and not averse to complexity per se. Instead, we show that individual attitudes toward complexity
play an important role and substantially affect values in ways incompatible with Expected Utility.
Other papers study aversion to complexity for preferences under risk. We demonstrate complexity
aversion in novel environments (updating and perception), introduce new experimental methods,
and provide evidence of the mechanism connecting complexity aversion with caution and cognitive
uncertainty. Lastly, a long tradition studies ambiguity aversion, caution, and their implications in
the presence of difficult decisions. We show how behavior reminiscent of ambiguity aversion and
caution applies widely, from high-level tasks like updating to low-level ones like visual perception,
where ambiguity’s role has not been studied. We also show how this is connected to cognitive
uncertainty and confidence. We discuss the vast literature in the next section.
Understanding attitudes toward complexity is central to modeling decision-making and policy

design. If, as we demonstrate, individuals are averse to complexity, this may explain preferences
for simpler options or why people might avoid making choices altogether. This aversion may also
explain why companies often highlight the simplicity of their offerings. Policymakers who overlook
complexity aversion risk designing overly complicated options, discouraging engagement. Instead,
our findings support a well-established principle in policy design: simpler options can be more
effective than complex alternatives, even at the expense of limiting choice.
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Experiments. We conduct three preregistered experiments on Prolific, totaling 2245 subjects. All
experiments follow the same basic structure. In typical questions, there is a binary state of the
world, and participants are asked to assign a dollar value to two bets—one for each state—or to
their preferred bet. For example, in Experiment A, subjects are presented with an updating task and
asked the value of bets that pay $30 under each of the two states. Separately, participants report
their beliefs (as in typical experiments), cognitive uncertainty, and the dollar value they assign to
50/50 lotteries and bets on an Ellsberg urn.
Our main test in this experiment compares the value of bets in the updating task with that of

50/50 lotteries. Under Expected Utility, at least one of the two bets must be as valuable as the
50/50 lottery, since the probability of at least one of the two states must be at least 50%. If the
observed values are lower, another force must be at play. This design mirrors the Ellsberg paradox
but applies to tasks with no objective ambiguity.
The three experiments differ in how the state is determined. In Experiment A (updating), the

state corresponds to the color of a drawn ball, where participants must perform a simple updating
task to assess the chances. In Experiment B (visual perception), participants are shown two circles
with dots, and the state identifies the circle with more dots. In Experiment C, the state results from
a compound lottery. Despite these variations, the experiments follow a similar structure, including
measures of cognitive uncertainty and assessments of lottery values and Ellsberg bets.
To further investigate the underlying mechanism, we include variants designed to “switch off”

complexity while keeping all other elements constant. For example, in Experiment A, a “mirror”
treatment involved a task computationally identical to updating but conceptually much simpler.

Complex Options Receive Lower Values. Individuals significantly undervalue options they per-
ceive as complex. In Experiment A (updating), subjects valued updating bets on average $12.7
against $14.3 for 50/50 lotteries. In Experiment B (perception), participants with below-median
confidence valued their preferred bet about $1 less than a 50/50 lottery. In Experiment C (com-
pound risk), participants valued a non-trivial compound lottery with a 50% chance of payout $2.6
less than a 50/50 lottery. (The latter is the standard aversion to compound lotteries.) These effects
are not only statistically significant and robust but also economically meaningful.

Relation with Cognitive Uncertainty and Ambiguity Aversion. Next, we explore the mecha-
nism. We propose that participants assign lower values when they perceive the tasks as complex
and are ambiguity averse. Consistent with this mechanism, we find that undervaluation is strongly
linked to the interaction between cognitive uncertainty and ambiguity. Specifically, participants
who both perceive the task as complex and are ambiguity averse exhibit significantly greater un-
dervaluation. This effect holds across all experiments and in various regression models, including
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both continuous interaction terms and separate regressions for high and low cognitive uncertainty.
To further validate this mechanism, we demonstrate that undervaluation nearly disappears

when participants do not perceive the tasks as complex. This holds both within and between sub-
jects: for a given question, the effect is stronger among those who find the task more complex,
while across questions, the effect vanishes for tasks perceived as easier. Additionally, our effects
completely disappear in the mirror treatment in Experiment A, where the computational demands
are identical, but conceptual complexity is removed. This confirms that the results are not artifacts
of the design but reflect complexity aversion.
The relationship with ambiguity has a more nuanced interpretation. One possibility is that

ambiguity aversion is the root cause of the observed undervaluation: participants may perceive
complex bets as inherently ambiguous. Alternatively, it may be the other way around, and what we
interpret as ambiguity aversion could reflect participants’ dislike of the Ellsberg task itself, which
they may perceive as complex. More generally, both phenomena may represent instances of a
broader tendency toward caution when faced with options that are not fully understood.

Implications for Updating and Compound Aversion. Beyond their broader implications for how
complexity affects valuations, our results provide insights into the specific tasks we examine, which
have long traditions in economics. In Experiment A, participants assign significantly lower values
to bets that require updating, with a behavior incompatible with Expected Utility. This aversion to
the complexity of updating is largely ignored in the extensive literature on non-Bayesian behavior,
which often allows for non-Bayesian posteriors but assumes that participants still hold well-defined
posteriors and follow Expected Utility. Our findings challenge this assumption, suggesting that
people dislike bets that rely on updating for their inherent complexity.
Similarly, many papers find a correlation between ambiguity and compound lotteries aversion,

interpreted as either ambiguous bets being perceived as compound or compound bets perceived as
ambiguous. Our findings point towards the latter interpretation, as we find that the relationship is
modulated by cognitive uncertainty and diminishes when participants do not perceive compound
lotteries as complex.

In the Data of Enke and Graeber (2023). To further test our mechanism, we reanalyze the data
of Enke and Graeber (2023), which measures the certainty equivalents of lotteries and cognitive
uncertainty. According to our mechanism, higher cognitive uncertainty should correspond to lower
valuations. We find strong evidence for this effect in addition to the attenuation already docu-
mented in that paper: going from 0 to 1 in cognitive uncertainty lowers the certainty equivalents
by about 27%. This not only validates our findings in a preexisting dataset but also shows how our
mechanism applies to the important domain of lottery evaluation with sizable effects.
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2 Related Literature

There is an immense literature on complexity and its implications in economics, computer science,
and cognitive sciences. As it is too large to discuss here, we focus on recent contributions, particu-
larly in economics, and refer the reader to several extensive surveys.1

Implications of Complexity: Rational Attention and Cognitive Models. Many papers study the
implications of complexity theoretically and empirically, showing how it can lead to mistakes and
stochasticity, impact attention and salience, increase the use of heuristics, yield choice avoidance
and a preference for simpler options. Empirical research spans from lab experiments on basic tasks
to real-world data, such as the effects of tax code changes. Among recent contributions are Iyengar
and Kamenica (2010); Agranov and Ortoleva (2015); Halevy and Mayraz (2022); Lacetera et al.
(2012); Bordalo et al. (2023); Molavi et al. (2023); Kendall and Oprea (2024); Arrieta and Nielsen
(2024); see also the survey in Oprea (2024) and the literature review in Gabaix and Graeber (2023).
Lipman (1995) and de Clippel and Rozen (2024) provide overviews of the literature on bounded
rationality, while Campbell (1988) reviews relevant literature in psychology.
Two approaches to complexity have gained particular prominence in behavioral economics in

recent years. First, models of inattention, especially rational inattention. In these models, when
faced with a complex environment, individuals endogenously decide how much and what informa-
tion to acquire to maximize Expected Utility. These models have been widely applied to essentially
all economic settings, from IO to macro to finance; see the surveys in Gabaix (2019) and Woodford
(2020). Related models on optimal stopping are common in cognitive sciences; see Fudenberg et al.
(2018) for economic analysis.
Second, an expanding literature in behavioral economics shows how Bayesian models of limited

cognition can generate many patterns traditionally ascribed to preferences; Woodford (2020) and
Enke (2024) provide extensive reviews. In these models, individuals receive noisy signals about
features of the environments and follow Bayes’ rule to construct their beliefs; once these are formed,
they maximize Expected Utility. These models typically display attenuation, that is, shrinkage of
beliefs towards the prior.
A common feature of these two very popular approaches—inattention and cognitive models—is

that complexity affects how beliefs are formed, but individuals continue to form beliefs and follow

1Studying complexity requires defining it, a point tangential to our goals. See Oprea (2024) for a review of
how complexity has been defined, measured, and modeled. The literature has yet to converge on a single definition;
recent economic proposals include using the support size of a lottery (Puri, forthcoming), the inverse of the total factor
productivity in cognitive processing (Gabaix and Graeber, 2023), or empirical regularities (Enke and Shubatt, 2023).
Our work makes a limited contribution to this debate, but we do find that confidence significantly increases in our
mirror treatments for updating tasks, suggesting that the complexity of updating stems more from the conceptual
challenge of applying Bayes’ rule than from algebraic difficulty.
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Expected Utility given these beliefs. Once beliefs are defined, there is no aversion to complexity
beyond Expected Utility. In rational inattention, individuals are averse to the cost that complexity
entails to gather information, but once information is obtained, they do not lower the value of an
option because it is complex.2 In cognitive models, complexity entails uncertainty, which increases
the attenuation of beliefs, but once these are formed, there is no aversion to complexity per se.
Contrary to this assumption, our results show that individuals are averse to complexity even

after information is gathered and a decision is made. In general, we show that Expected Utility fails
to capture how values are given in complex environments. This suggests that models of inattention
and cognition are currently disregarding an important aspect—aversion to complexity or caution—
that may have substantial implications for behavior.

Aversion to Complexity. A much smaller but growing strand of the literature focuses instead
precisely on aversion to complexity. Empirically, several papers document that the complexity of
lotteries—most often understood as the number of possible outcomes—lowers their values. Among
recent contributions, Huck and Weizsäcker (1999), Sonsino et al. (2002), Moffatt et al. (2015),
Bernheim and Sprenger (2020), Fudenberg and Puri (2022a,b), and Puri (forthcoming) highlight
the role of such complexity as a significant driver of behavior in lottery choices. Similarly, empirical
work in real-world data in finance demonstrates the negative effect of complexity on prices (Carlin,
2009; Célérier and Vallée, 2017); Goodman and Puri (2024) shows that many retail investors in
option markets prefer binary options against strictly dominant more complex alternatives.
On the theoretical front, Puri (forthcoming) characterizes a model in which lotteries are evalu-

ated by subtracting from the Expected Utility a cost of complexity that depends on the support size
of a lottery. The model in Mononen (2023) is similar, except that the cost depends on the lottery’s
entropy, while in Hu (2022) it depends on the size of a partition of outcomes. Extending beyond
lotteries, Gabaix and Graeber (2023) propose a tractable model in which complexity is defined as
the inverse of the total factor productivity of thinking about a task and optimally allocating atten-
tion; an extension of their model allows subjects to have a form of first-order complexity aversion. In
Ortoleva (2013), individuals lower the value of choice sets that require a thinking cost to determine
the optimal choice to the point that they may prefer fewer options.
Our paper contributes to this literature by providing new evidence of aversion to complexity in

novel environments, such as updating and perception, where complexity matters in ways beyond
support size—indeed, the 50/50 lottery has the same number of possible prizes as the updating
bet and the perception bet, yet values are all different. We also introduce new methods to elicit
attitudes towards complexity. Importantly, we also connect this aversion to cognitive uncertainty
and ambiguity aversion, which provides novel insight into the mechanism at play.

2One exception is Fabbri (2024), which studies rational inattention with ambiguity aversion.
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Additionally, several papers documented how individuals often avoid choosing (or revert to
the default choice) when the number of options or the complexity of the problem increases—a
phenomenon dubbed choice overload: see Iyengar and Lepper (2000); Iyengar et al. (2004); Iyengar
and Kamenica (2010); Dean et al. (2023) and the reviews in Scheibehenne et al. (2010); Chernev
et al. (2015). Choice avoidance in the face of complexity is a natural implication of the aversion to
complexity we document. This intuition is also compatible with the results of Iyengar and Kamenica
(2010), which shows that individuals opt for simpler options as the complexity increases.

Ambiguity Aversion and Caution. A separate strand of the literature studies ambiguity aversion,
the aversion to alternatives whose value depends on states the likelihood of which is not exoge-
nously given; see the review in Gilboa and Marinacci (2013). Our results are naturally related. We
document aversion to complexity using a method that mirrors the Ellsberg paradox, and we find
that this is correlated with regular ambiguity aversion. From this vantage point, our results can
be seen as showing how a cautious behavior correlated with ambiguity aversion is also present in
tasks where the latter is typically not applied—such as simple updating—or where it is not obvi-
ous it should even apply—such as visual perception tasks where the prior is given. Moreover, our
results show how the effect of ambiguity aversion is, in fact, modulated by cognitive uncertainty.
As discussed above, the relation between complexity and ambiguity aversion can have many inter-
pretations: it may be that complexity generates ambiguity, that ambiguous choices are complex, or
that both are instances of a general dislike towards poorly understood options, akin to caution.
More broadly, our results that individuals give lower values to complex alternatives relate to

the broader notion of caution introduced in Cerreia-Vioglio et al. (2015a, forthcoming). In these
models, individuals act cautiously, in the sense of lowering values, when faced with the difficulty
of evaluating lotteries or determining preferences; these papers show how such an approach can
generate typical patterns of behavioral economics like the certainty effect, the endowment effect,
or loss aversion. Exactly in line with this broad perspective, our results show experimentally that
individuals generally adopt a cautious approach when faced with difficult decisions.
Additionally, our results on how complexity lowers values relate to the recent literature on

“ambiguous information” because one can model it as if complexity generated hard-to-interpret
signals, as in the model of Epstein and Halevy (2024, Sect. 4 and A.1), where individuals are
unsure of the joint distribution between signals and states; see also Shishkin and Ortoleva (2023);
Liang (forthcoming). We elaborate on this point in Section 7.

Incomplete Preferences and Deliberate Randomization. Decision difficulty may also induce
preferences to be incomplete. Recently, Halevy et al. (2023) demonstrated how this is likely the
case in difficult decisions based on perceptual tasks using a richer notion of probability equivalents.
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These findings complement ours and can be read jointly: complexity may induce incompleteness,
and subjects may complete preferences using caution; this reflects, once again, the approach in
Cerreia-Vioglio et al. (2015a) as well as Gilboa et al. (2010), which shows that non-Expected Util-
ity models compatible with our results can be derived from cautious completions of incomplete
preferences (“when in doubt, go with certainty;” see Section 4 in Cerreia-Vioglio et al. 2015a).
Recent evidence also shows how decision difficulty may induce people to randomize (Agranov

and Ortoleva, 2015; Dwenger et al., 2018). Arts et al. (2024) shows that decision confidence and
preference for randomization are strongly (negatively) correlated. This is again in line with our
results and interpretations: we show that complexity generates difficulty in understanding to which
individuals react with caution, lowering values and violating Expected Utility; the same cautious
preferences can lead to a preference for randomization, as in the models of Cerreia-Vioglio et al.
(2015b); Fudenberg et al. (2015).

Non-Bayesian Updating. Our results also relatemore specifically to the literature on non-Bayesian
behavior. A vast literature documents violations of Bayes’ rule and proposes alternative models; see
the surveys of Benjamin (2019) and Ortoleva (2024). In virtually all of these models, individu-
als may deviate from Bayes’ rule but do nonetheless form a well-defined posterior—a probability
distribution over the states of the world—and use it following Expected Utility. Several papers sug-
gest that the complexity of the task affects how the posterior is computed and the role of cognitive
uncertainty, either by guiding attention or leading to attenuation in various directions; for recent
examples, Enke and Graeber 2023; Augenblick et al. 2023; Ba et al. 2023. The complexity of the
task may also affect the representativeness of various states (Bordalo et al., 2016) and the complex-
ity of the models may affect updating (Ortoleva, 2012). However, even in these cases, a posterior
is computed, and complexity plays no further role once it is computed.
Our results show that this literature may be overlooking an important aspect: the undervalua-

tion of bets because updating is complex. We show how this may lead individuals to evaluate bets
after updating in a way incompatible with having a well-formed posterior and following Expected
Utility, contrary to all typical models of non-Bayesian behavior. Overall, our results suggest that the
literature on non-Bayesian behavior may be ignoring an important component.

Ambiguity and Compound Lotteries. Finally, our results speak to the large literature on the rela-
tionship between ambiguous and compound lotteries. Starting with Halevy (2007), several papers
documented a strong relationship between ambiguity and compound aversion (e.g., Abdellaoui
et al. 2015; Dean and Ortoleva 2019; Gillen et al. 2019; Chapman et al. 2023; Wu et al. 2024).
Two interpretations have been offered: either ambiguous bets are perceived as compound for the
uncertainty on the urn composition, as suggested by Segal (1987) and Halevy (2007); or compound
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lotteries, being complex, are perceived as ambiguous, as explicitly suggested, for example, in Dean
and Ortoleva (2019) and Gillen et al. (2019). Recently, in independent and preceding work, Wu
et al. (2024) provides evidence supporting the latter by showing that teaching individuals how to
reduce compound lotteries eliminates compound but not ambiguity aversion.
Our results provide further evidence that it may be the complexity of compound lotteries that

makes them ambiguous and generates the aversion. First, we show that the correlation between the
two attitudes is stronger for subjects with high cognitive uncertainty about the compound lottery’s
payment probabilities. Second, we show that some aversion remains when lotteries are transformed
into one-stage, maintaining some complexity.

3 Experiment A: Updating

Although Bayes’ rule may be intuitive to some, updating beliefs remains nonetheless a non-trivial
task, even for those familiar with the formula. Indeed, it is widely established that most people tend
to make systematic errors and are prone to various biases in belief updating (Benjamin, 2019), an
undertaking which often requires deliberate effort to be accurate—including for the authors of
this article. At the same time, choices that require updating are commonplace —from medical
decisions (doctors and patients) to financial or political news to strategic interactions. Our first
experiment investigates whether people might undervalue prospects that depend on updating due
to the inherent complexity of forming posterior beliefs.

3.1 Design

The idea of our design is to present subjects with updating tasks andmeasure not only their posterior
beliefs but also the dollar value they assign to bets that depend on updating and compare it to the
dollar value of 50/50 bets. In each bet, the computer simulates the draw of a ball from a bag with
green or purple balls, and the bet pays $30 if the drawn ball is purple ($0 otherwise). We elicit bet
values through standard multiple-price lists (MPL).3 Participants face multiple scenarios that differ
in the information provided about the bag composition:

• 50/50 Lottery: The bag contains an equal number of purple and green balls, making it easy to
see that the probability of winning is 50%. Subjects face two versions of this lottery at different

3The MPL works as follows. For each amount𝑚 ∈ {$1, . . . , $30}, subjects choose between $m for sure or $30 if
the drawn ball is purple ($0 otherwise), with only one switching point permitted. Subjects are trained on the use of
MPLs and their understanding is tested in a quiz that checks if they fill out the MPL correctly when valuing the sure
amount of $5.50. Subjects cannot proceed until they pass the quiz, and, as we discuss below, the main analysis focuses
on subjects who pass the quiz on the first try. The Online Appendix includes screenshots of the interface, including the
instructions and quiz. To define a value from the discrete grid, we follow the standard practice of taking the average
of the two values where switching occurs (except at the extreme, where we use boundary values).
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Figure 1: The Scenario of the Updating Bet.

points, once with a bag containing 25 purple balls and 25 green balls and once with a bag
containing 50 purple balls and 50 green balls.

• Updating Bet: The information for this bet is presented in Figure 1. Correctly applying Bayes’
rule shows that the winning probability of purple is 50%. However, some subjects may hold
different beliefs or find it challenging to figure out the odds of winning.

• Complement Updating Bet: The information is the same as the previous bet except that the
numbers of purple and green are inverted. This is equivalent to betting on the green in the
same environment of Figure 1 while keeping all bets on purple, which is easier for subjects, and
making clear that these are different draws from different bags.

• Ellsberg Bet: Subjects are only told that the bag contains 100 purple or green balls, but not the
exact composition, and that “they could be all Purple, all Green, or any combination.”

In addition to measuring the dollar value, for the Updating Bet and its Complement we elicit on
separate screens both i) the belief of the “exact” chance that the drawn ball is purple (incentivized
with binarized-scoring, $5 prize) and ii) the subject’s cognitive uncertainty (CU) about this. For
the latter, following Enke and Graeber (2023), subjects indicate how confident they are about their
answer about the exact chance, from 0% (“very uncertain”) to 100% (“completely certain”) in steps
of 10%; their cognitive uncertainty is then 100% minus their confidence.
A vast literature used similar scenarios to test Bayes’ rule, measuring beliefs after information.

We depart from this literature in that we measure the dollar value of bets after updating, in addition
to beliefs, and also because we measure the value for (the equivalent of) bets on both colors.⁴
Our design is motivated by the following observation. Most economic models assume agents

apply Bayes’ rule; in that case, the Updating and Complement bets are both equivalent to the 50/50

⁴We also deviated from the classic “bookbag-and-poker-chip” experimental design (see Benjamin 2019 for a survey)
by using “marked balls” instead. We did so for two reasons. First, our design easily lends itself to simple Mirror
treatments described below. Second, and more importantly, the classic design involves two stages of uncertainty,
which may induce subjects to dislike the bets for other reasons (see Experiment C below).
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Figure 2: The Mirror counterpart of the scenario from Figure 1.

Lottery. Models from psychology and behavioral economics generalize this and permit posterior
beliefs to be distorted due to a variety of possible biases (e.g., base-rate neglect or over- or under-
inference). Even then, virtually all models assume that subjects do hold a belief and follow Expected
Utility. But if they hold a belief about the chances of Purple vs. Green—any belief, Bayesian or not—
they should assign to at least one of the two bets a probability of winning of at least 50%. This means
that they cannot assign to both bets a value below that of the 50/50 lottery. Therefore, our first
test will compare the value of the updating bets with that of 50/50 lotteries and we will measure
complexity aversion as the difference in values. In addition, we conjecture that such differences may
occur because the complexity of updating may generate subjective uncertainty. For this reason,
we include cognitive uncertainty, as defined above, and we measure ambiguity aversion as the
difference in value for the 50/50 lottery and the Ellsberg bet. Our second test will be to study the
relationship between complexity aversion, on the one hand, and ambiguity aversion and cognitive
uncertainty, on the other hand.
The experiment proceeds as follows. After training about scenarios and MPLs, and after com-

prehension quizzes, subjects face a 50/50 lottery; the Updating and Complement bets (in random
order) with associated belief and cognitive uncertainty elicitation; another 50/50 lottery; and, fi-
nally, the Ellsberg bet.⁵

Mirror Treatment. One may conjecture that complexity aversion should be mitigated when com-
plexity is reduced. To test this, we devised a treatment computationally identical but conceptually
much simpler because the sequence of steps becomes self-evident. Figure 2 shows the Mirror coun-
terpart of the scenario in Figure 1. We conjecture that cognitive uncertainty is much lower in this
treatment and that complexity aversion disappears.

⁵The experiment, like all our experiments in this paper, ends with unincentivized questions to measure overconfi-
dence (overprecision): subjects are asked when the telephone was invented and their confidence. Following Ortoleva
and Snowberg (2015), overconfidence is defined as the residual of a regression of confidence on a fourth-degree poly-
nomial of accuracy.
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Implementation. A total of 493 and 254 subjects participated in treatments the Main and Mir-
ror treatments, respectively, through the Prolific platform in April 2024 and the experiment was
pre-registered on AsPredicted.org.⁶ As required by our pre-registration, the main body of the pa-
per focuses only on the subjects who pass our comprehension quiz on the first attempt (69% in
either treatment); this selects the most attentive part of the sample, reducing concerns about noise.
Appendix C replicates our figures and tables for the entire sample, obtaining very similar results.

Safeguarding Against Spurious Correlation. Before discussing our results, we address a tech-
nical point. One difficulty in studying the relationship between complexity aversion and ambiguity
aversion is that the value of 50/50 lotteries is used to define both, which may lead to a spurious
correlation in the case of measurement noise. One way to circumvent this issue is to define com-
plexity aversion and ambiguity aversion using the answers to different lottery questions. However,
this means that each variable is constructed with fewer measurements and is more noisy. Instead,
we adopt an approach that uses all measurements for each variable while avoiding spurious corre-
lation via constrained regression, a standard econometric tool that, to our knowledge, finds novel
application in this literature.
To illustrate, denote by U, E and L the value of the Updating Bet (or its Complement), of the

Ellsberg Bet, and the average of the two 50/50 lotteries, respectively; and denote by CA and AA
complexity and ambiguity aversion, where CA = L−U and AA = L−E. Imagine we want to regress
CA on AA, possibly with controls, that is

CA = 𝛼 + 𝛽AA + ®𝛾 · controls + error.

A spurious correlation may emerge between CA and AA if L is measured with error. However, note
that the regression above is equivalent to L − U = 𝛼 + 𝛽 (L − E) + ®𝛾 · controls + error, and thus to
−U = 𝛼 + (𝛽 −1)L− 𝛽E+ ®𝛾 · controls+ error. But then, we can simply run the constrained regression

U = 𝛼′ + 𝛽′1L + 𝛽′2E + ®𝛾 ′ · controls + error, with constraint 𝛽′1 = 1 − 𝛽′2.

This yields the estimates 𝛼 = −𝛼′, 𝛽 = 𝛽′2, and ®𝛾 = −®𝛾 ′. This regression is not subject to spurious
correlation while using all available information. The same approach can be used when consider-
ing discrete or continuous models of how CU may interact with ambiguity aversion; Appendix A
provides full details for both types of models.

⁶ We restricted our pool to subjects in the US, between 21 and 65 years of age, with at least an undergraduate
degree and a Prolific approval rate above 98%. Median completion time was about 10 minutes. Subjects received $3
for participation, and 10% of subjects were eligible for a bonus payment based on their answer to one of the main tasks
(drawn at random). The average bonus was $11.90. One subject somehow completed both treatments, and it was
dropped. The protocol can be found at https://aspredicted.org/fzds-2r8d.pdf.
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In the remainder of the paper, we use the constrained regression approach to estimate the
impact of ambiguity aversion (and its interactions) on complexity aversion. That is, we report the
imputed coefficients𝛼, 𝛽, ®𝛾, etc. from the original model, not𝛼′, 𝛽′, ®𝛾 ′ from the auxiliary, constrained
regression. Unfortunately, we are not aware of a natural counterpart of this method to draw figures
that depend on both complexity and ambiguity aversion (e.g., in Figure 4 below); for those, we use
different lottery values to construct the two measures, using adjacent elicitations when possible.

3.2 Results

Caution. We begin by analyzing the Main treatment. Our core question is assessing the presence
of complexity aversion and the role of cognitive uncertainty and ambiguity aversion in mediating
this. We approach the data from two angles. We first provide summary statistics, comparing the
values for our updating bets with the (average) values of the 50/50 lotteries. We then further
investigate the mechanism through regression analysis.
The blue and red curves in Figure 3(a) depict the CDF of dollar values of the Updating and

Complement bets next to the CDF of the average value of 50/50 Lotteries. Our first main result is
that, while the distributions of values of updating bets are nearly identical, they are both first-order
stochastically dominated by that of 50/50 lottery values (both sign-rank tests 𝑝 < 0.0001). Figure
3(b) shows this at the individual level: for most subjects, the average value of the two updating
bets is lower than that of the 50/50 lottery (below the 45◦ line). For each subject, we can define
average complexity aversion as the average 50/50-lottery value minus the average value of the two
updating bets: Figure 3(c) depicts the resulting histogram, showing that 19% of subjects exhibit a
strictly negative value, 27% zero, while the remaining 54% exhibit a strictly positive value. Overall,
average complexity aversion is $1.54, with a large variance; it is $3 or more for subjects in the top
quartile. Among complexity-averse subjects, the mean is $3.8. Average complexity aversion can
thus be high—at least 10%, but easily 20%, of the expected value of the lottery.

Robustness. In Figure 3(a), we compared the value of each of the two updating bets with that of
50/50 lotteries at the population level, while in Figure 3(b)-(c) we compare the average value of
the two updating bets with that of 50/50 lotteries. Are these the right tests? What if subjects hold
incorrect and thus asymmetric beliefs, making the values of the two bets very different? First, note
that under expected utility, as long as the Bernoulli utility is not strictly risk-seeking in any range of
prizes, the average value of the two bets must still be above that of the 50/50 lottery even with very
different beliefs; hence, comparing averages is, under typical assumptions, a conservative test.⁷

⁷If 𝑢 is the Bernoulli utility and 𝜋 the chances of purple, the values of bets of purple and green are 𝑢−1 (𝜋𝑢 (30))
and 𝑢−1 (((1 − 𝜋)𝑢 (30)). As long as 𝑢 is nowhere strictly convex, by Jensens’ inequality, the average of these two
values is above that of the 50/50 lottery, 𝑢−1 ((0.5𝑢 (30)). The same also holds if we allow probability weighting of
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(a) CDFs of values of updating bets and 50/50 lottery, with sample means marked.

(b) Frequency-weighted scatterplot of the average
values of updating bets versus the 50/50 lottery.

(c) Histogram of average complexity aversion (avg.
values of updating bets minus avg. value of 50/50
lottery)

Figure 3: Three graphs on the value of updating bets and 50/50 lotteries in the Main treatment.
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Second, we can focus on subjects with 50/50 beliefs on both bets, as measured by the reported
beliefs; this is the correct Bayesian posterior, computed by about 35% of our subjects.⁸ While 42%
of them are neutral to complexity, another 40% continue to exhibit complexity aversion: the total
average is $.79, significantly different from zero (t-test p-value < .0001). This could be of interest
per se: even some of the subjects who correctly compute the Bayesian posterior may continue to
exhibit complexity aversion—because, as we will later argue, many of them remain unsure.⁹
Third, we can compare the max of the values of the two updating bets with the values of 50/50

lotteries; more precisely, to reduce bias due to measurement error, we can compare it with the max
of the two 50/50 lotteries.1⁰ This is too stringent of a test: when beliefs are very asymmetric, we
should expect at least one of the two lotteries to be valued more, even if complexity aversion is
at play.11 But we continue to see complexity aversion: the average difference is very similar, at
$1.59 (significantly different from zero, paired t-test 𝑝 < .0001). As can be seen from Figure 11 in
Appendix B, the CDF of maximum values for the 50/50 lotteries first-order dominates that of the
maximum value of bets (and these are significantly different; sign-rank test 𝑝 < .0001).
Overall, these findings are incompatible with virtually all existing theories of non-Bayesian up-

dating, according to which individuals have a (possibly non-Bayesian) posterior that they use fol-
lowing Expected Utility: instead, we show that they reduce the value of bets depending on updating
in a way incompatiblewith having a posterior and following Expected Utility. Next, we turn to study
the mechanism.

Relation with Cognitive Uncertainty and Ambiguity. If complexity aversion is a reaction to
cognitive uncertainty akin to ambiguity, it should increase with cognitive uncertainty, ambiguity
aversion, and, importantly, their interaction: We should observe high complexity aversion when
both are high.
First, we can depict this graphically. Figure 4 shows the CDF of complexity aversion for subjects

in the top and bottom quartiles of cognitive uncertainty, sub-divided by whether or not they are
ambiguity averse.12 It is evident that one group has higher complexity aversion than the others:

high prizes (Cumulative Prospect Theory, Rank-Dependent preferences), as long as the average weight given to 𝜋 and
(1 − 𝜋) is above that of 0.5; this is the case in all typical specifications when 𝜋 is not too small, or with any convex
weighting function. The same holds with disappointment-averse preferences (Gul, 1991, 𝛽 > 0).

⁸This value is relatively high and shows how comparably easy our updating task is. The remaining subjects exhibit
classical patterns, with clusters around the base rate, ignoring the base rate, or other known fallacies.

⁹Only 40% of subjects with the correct posterior report no cognitive uncertainty; the average cognitive uncertainty
is 17%. This is, however, much lower than that of everyone else (45% on average).
1⁰To see why this is needed, suppose we didn’t, and we compared the max of the two bets with the average of the

50/50 lotteries. If all four values are drawn from the same distribution, by construction, the max of two values will
typically be strictly above the average of the other two.
11For example, suppose that complex options are valued by Expected Utility minus a penalty 𝑐. If one of the beliefs

is very high, one of the bets will have value close to $30, higher than the 50/50 lottery even if 𝑐 is large.
12As mentioned above, to avoid spurious correlation, this picture uses the 50/50 lottery evaluation adjacent to the
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Figure 4: Complexity aversion in 4 subgroups: top and bottom quartiles of Cognitive Uncertainty,
divided based on (strict) Ambiguity Aversion vs. Ambiguity Neutrality/Seeking

subjects in the top quartile of cognitive uncertainty who are also ambiguity averse. Even within
the same top quartile of CU, the difference is significant when comparing to non-ambiguity averse
subjects (Wilcoxon rank-sum test, p-value .0236).
Table 1 corroborates this result in regressions. Column (1) considers a discrete interaction,

contrasting the role of ambiguity aversion when subjects express cognitive uncertainty above vs.
below the median. Column (2) models a continuous interaction instead (allowing for the possibility
that CU and ambiguity aversion may also impact complexity aversion separately). Once again, the
results are clear. In the first regression, we have a strong and highly significant effect of ambiguity
aversion for subjects with high cognitive uncertainty; for those with low cognitive uncertainty, the
effect of ambiguity aversion is much smaller and only marginally significant (the two coefficients are
indeed statistically different, p-value 0.0022). To interpret the coefficient on those with high CU, 38
cents per dollar of ambiguity aversion goes towards complexity aversion. The same conclusions also
hold in the second regression, which shows i) a strongly significant continuous interaction between

ambiguous bet to define ambiguity aversion, using the other 50/50 lottery evaluation to define complexity aversion.
Ambiguity aversion is defined as assigning a value to the ambiguous bet which is strictly below that of the 50/50 lottery.
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Table 1: Experiment A: The Role of Ambiguity and Cognitive Uncertainty

Complexity Aversion
(1) (2)

High Cognitive Uncertainty:

Ambiguity Aversion .38***
(.06)

Low Cognitive Uncertainty:

Ambiguity Aversion .11*
(.06)

Ambiguity Aversion .09
(.06)

CU -.76
(.60)

Ambiguity Aversion × CU .43***
(.11)

Constant 2.64*** 2.65***
(.61) (.63)

Observations 676 676
Controls Y Y

Notes: Each updating bet is an observation, with robust standard errors clustered by subject
in parentheses. * 𝑝 < .1,*** 𝑝 < .01. Both (1) and (2) are obtained from constrained regres-
sions following the method explained above. Controls include beliefs about probabilities and
a dummy for each updating task and, in model (1), a dummy for High Cognitive Uncertainty
(being in the top half of the CU distribution).

ambiguity aversion and cognitive uncertainty and ii) that neither CU nor ambiguity aversion is
significant beyond that interaction. In particular, 43×CU cents per dollar of ambiguity aversion go
towards complexity aversion.

Mirror. If complexity aversion is the reason that updating bets are undervalued, these effects
should be mitigated if complexity is reduced—the goal of our Mirror treatment. Our measure of
cognitive uncertainty confirms that this treatment was effective: the average cognitive uncertainty
went down to 15% in the Mirror treatment (from 35% in the Main treatment), with 55% of subjects
expressing zero cognitive uncertainty in the Mirror (versus 25% in the Main treatment). If our
hypothesis is correct, complexity aversion should disappear. Figure 5 shows that it does: Panel
(a) shows the the CDFs of values for the updating bets are nearly the same as 50/50 lotteries,
while Panel (b) shows that most people indeed report nearly identical values. That is, our Mirror
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(a) Mirror Treatment: CDFs of dollar values of up-
dating bets and average value of 50/50 lotteries.

(b) Mirror Treatment: Scatter Plot of average dollar
value of updating bets and 50/50 lotteries.

Figure 5: The value of updating bets and 50/50 lotteries in the Mirror treatment.

treatment was effective in sharply reducing complexity, and complexity aversion disappeared.
Aside from further supporting our hypothesis and reassuring that our earlier results are not

an artifact of the design, the results of the Mirror treatment also shed light on which aspect of
updating is mostly responsible for complexity. Recall that the Mirror treatment involves the same
algebraic operations, but with very little conceptual difficulty in identifying those steps. The fact
that both cognitive uncertainty and complexity aversion go down sharply suggests that it is indeed
the conceptual rather than the algebraic difficulty of updating that mostly determines the complexity
of the task—and subjects’ aversion to it.

Demographics and Overconfidence. We have data on participants’ gender, age, and overcon-
fidence (measured as overprecision). Do these relate to our findings? In general, they do not.
Participants identifying as female report higher cognitive uncertainty, and overconfidence is nega-
tively related to both cognitive uncertainty and ambiguity aversion; however, neither gender, age,
nor overconfidence relates to complexity aversion. Including these variables as controls in our re-
gressions does not affect the results (and these controls are almost always non-significant). The lack
of effect from overconfidence suggests that complexity aversion is driven by participants’ introspec-
tive perception of confidence rather than a “normalized” version that removes the overconfidence
component. Similar findings hold across all experiments, so we will not repeat them.
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Summary of the Results. We have shown that 1) the majority of subjects value two complemen-
tary updating bets less than 50/50 lotteries, a result incompatible with typical preference models,
suggesting that another force is at play; 2) this difference in value, which we call complexity aver-
sion, can be substantial; 3) complexity aversion is significantly higher for subjects who jointly have
high cognitive uncertainty and ambiguity aversion; 4) this effect disappears in the mirror treat-
ment, showing that complexity in updating arises from the conceptual difficulty of identifying the
correct updating rule rather than algebraic difficulty.

4 Experiment B: Perception

The experiment above required subjects to perform a relatively high-level information-processing
task, which included the conceptual process of updating probabilities and the need to manipulate
numbers to determine the likelihood of winning. Are our results limited to high-level tasks, or do
they also occur in low-level tasks?
This motivates our second experiment, which relies on tasks based on visual perception. Stan-

dard in cognitive science, such tasks may be more natural to humans, as the skills they require
have been honed through evolutionary adaptation. Nonetheless, visual perception remains imper-
fect, ensuring that complexity does not disappear altogether, at least in more difficult tasks. Below,
we present evidence that complexity aversion is also found in this new context, along with the
mediating role of the interaction of ambiguous attitudes and perceived success.

4.1 Design

The main task of this section builds on a standard design in cognitive science (we use figures and
design principles from Kaanders et al. 2022). Two circles containing some dots sequentially and
briefly appear on the screen on the left and the right. One of these two circles, randomly determined,
contains more dots. In typical experiments, subjects are asked i) which circle has more dots? and,
sometimes, ii) their confidence in having made the right choice. By contrast, in the valuation phase
of our experiment, we ask i) which circle has more dots?, and ii’) we elicit the value, using a MPL,
of the bet that pays $30 if the answer is correct.
The idea of our design is similar to that of Experiment A. As the location of the circle with

more dots is determined randomly, all standard economic models of perception and information
acquisition agree that the bet value cannot fall below that of 50/50 lotteries. Indeed, the literature
typically models perception and information acquisition as receiving data from a Blackwell exper-
iment or choosing an experiment or a distribution of posteriors subject to a cost. Either way, the
decision maker ends up holding a posterior probability regarding the location of the circle with
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more dots. Being free to choose which circle to bet on, she must view the bet as a lottery with a
winning chance above 1/2. By contrast, we conjecture that subjects may feel unsure about their
winning chance when selecting the bet, treat it as akin to an ambiguous prospect, and consequently
undervalue it.
After training about MPLs and a comprehension quiz, the experiment unfolds in four parts. In

Part 1, subjects complete valuation tasks for a 50/50 lottery, 70/30 and 30/70 lotteries (in random
order), another 50/50 lottery, and an ambiguous bet; these lotteries are based on the color of the
ball drawn, similar to Experiment A. Part 2 introduces the perceptual task described above. After a
practice question, subjects are asked the value of 4 perceptual bets with varying difficulty: one easy,
one intermediate, and two hard (the easy one is always first, and one of the hard ones is always
last). Part 3 repeats the perceptual tasks, but, instead of asking the value of the bet, has subjects
use a slider to report the percent chance they think their answer is correct (unincentivized). Finally,
Part 4 has subjects again value a 50/50 lottery and an ambiguous bet.
While the design is broadly similar to Experiment A, we should highlight two differences. First,

subjects now choose which circle to bet on before reporting values instead of evaluating both bets.
Second, our measure of uncertainty here – the reported chance of being wrong – is not the same as
cognitive uncertainty in Experiment A: the latter captured the subject’s confidence in their stated
posterior, not the chance of winning the prize as measured here. But we expect that reporting a
higher chance of winning, meaning that one views the task as easier, is on average associated with
lower cognitive uncertainty.

Implementation. 498 subjects participated through Prolific in April 2024, and the experiment
was pre-registered.13 As before, following our pre-registration, the main body of the paper focuses
only on the subjects who pass our comprehension quiz on the first attempt (69% of subjects), while
Appendix C replicates our figures and tables for the entire sample; once again, results are very
similar.

4.2 Results

Preliminaries. We begin with two sanity checks regarding the perceptual bets. First, as expected,
the values of bets on the perceptual task vary with difficulty. The average values for easy, interme-
diate, and hard bets were $27.56, $18.28, and $14.47, with the distributions of values first-order

13Median completion time was about a bit over 10 minutes. As in Experiment A, subjects received $3 for participa-
tion, and 10% of subjects were eligible for a bonus payment based on their answer to one of the main tasks (drawn at
random). The average bonus paid was $17.60, with a maximum potential bonus of $30. The protocol can be found at
https://aspredicted.org/9vrx-6mm7.pdf.
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Figure 6: Two graphs on the values of hard perceptual bets for observations with uncertainty above
the median. Left panel: CDFs of dollar value of hard perception bets and average value of 50/50
lottery for those subjects. Right panel: histogram of complexity aversion (difference between value
of hard perceptual bets and average value of 50/50 lotteries).

stochastically ranked in the natural direction (see Figure 12 of Appendix B).1⁴ Second, for each type
of perceptual bet, the value of the bet varies significantly with the subject’s uncertainty about that
perceptual question (all p-values < .001). Given our interest in complexity, we focus on the hard
bets, for which 50/50 lotteries serve as a natural benchmark. As explained above, for any of the
perceptual bets, the value should theoretically exceed that of the 50/50 lottery, and this constraint
is most likely to bind when the perceptual task is most difficult.

Caution. Like in Experiment A, we are interested in comparing the value of bets with the average
value of 50/50 lotteries, particularly for subjects who are relatively uncertain. Figure 6(a) shows
the CDFs of the values of the two hard questions and average values of the 50/50 lotteries for
observations where uncertainty is above the median. Once again, we find that complex options have
a lower value (sign-rank p-values 0.0015 and 0.0113). On average, those with high uncertainty
value the bet at $12.48 against $13.93 for the 50/50 lotteries.
Defining, like before, complexity aversion as the subject-level value difference between 50/50

lotteries and the perceptual bet, Figure 6(c) depicts the histogram for high-uncertainty subjects,
showing that that is negative for 33.2%, zero for 14.3%, and strictly positive for 52.5%. Average
complexity aversion among these subjects is $1.02 (significantly different from zero, p-value 0.01),

1⁴Similarly, Figure 13 of Appendix B shows that the distributions of values for the lotteries are also first-order
stochastically ranked in the natural direction.
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Table 2: Experiment B: The Role of Ambiguity

Complexity Aversion
(1) (2)

High Uncertainty:

Ambiguity Aversion .58***
(.09)

Low Uncertainty:

Ambiguity Aversion .22*
(.13)

Ambiguity Aversion .09
(.20)

Uncertainty 9.01*** 6.66***
(2.51) (2.26)

Ambiguity Aversion × Uncertainty .77**
(.38)

Constant -5.23*** -4.89***
(1.01) (1.09)

Observations 684 684
Controls Y Y

Notes: Each perceptual bet is an observation, with robust standard errors clustered by subject
in parentheses. *** 𝑝 < .01. Both (1) and (2) are obtained from constrained regressions, as
explained earlier. Controls include a dummy for which hard perceptual task the observation
corresponds to, and in model (1), a dummy for uncertainty above median.

with large variation; among those who are strictly complexity-averse, average complexity aversion
is $5.36 (with a median of $4.67). Once again, complexity aversion can be high.

Relationwith Ambiguity. We can test the relationshipwith ambiguity asmediated by uncertainty—
noting, however, how uncertainty here relates to the chance of having incorrectly guessed which
circle has more dots. Table 2 shows the same regressions we computed for Experiment A for hard
perceptual tasks for all subjects (who pass our comprehension tests); we use the same constrained-
regression approach, with perceptual bets instead of updating bets. Regression (1) shows how
ambiguity aversion is positively and very strongly related to complexity aversion for subjects with
high uncertainty, while it is much smaller and barely significant (p-value 0.099) for subjects with
low uncertainty (the coefficients on ambiguity aversion for high/low uncertainty are statistically
different, 𝑝 = .0266). Regression (2) shows that while ambiguity aversion alone does not affect
complexity aversion, the interaction term with uncertainty is significant. Uncertainty alone is also
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significant. This is to be expected: aside from being likely correlated to cognitive uncertainty, it
also directly reflects the probability of (not) getting the prize. Overall, our results mirror those of
Experiment A despite the substantial differences in the tasks.
Experiment B corroborates our main takeaways from Experiment A: complex options are under-

valued in a way incompatible with standard models and this phenomenon is related to ambiguity
aversion but mediated by how uncertain a subject is. Importantly, these takeaways are confirmed
in a task on the opposite end of the cognitive spectrum with a different design.

5 Experiment C: Compound Risks

5.1 Design

Our third experiment studies the role of complexity and caution in a classical task in decision-
making under risk: compound lotteries. It is well established that individuals are averse to com-
pound lotteries and that this aversion is associated with ambiguity aversion (Halevy, 2007). Is this
relationship mediated by cognitive uncertainty? What is the role of complexity?
The experiment design shares many features with previous ones, including interfaces, order

of questions, training, and comprehension quizzes. Subjects face several scenarios in which the
computer draws a card from a deck (decks were chosen for reasons that will become clear). Like
before, in valuation tasks, subjects receive either $0 or $30 based on the color of the drawn card.
In our main treatment, the experiment begins with subjects valuing a 50/50 lottery, 70/30

and 30/70 lotteries (in random order), another 50/50 lottery, and an ambiguous bet. Subjects
then evaluate compound bets (in random order). The main ones appear in Figure 7. Both are
non-degenerate compound lotteries that reduce to a 50/50 probability of winning. However, this
equivalence is much less transparent for the scenario on the left than the one on the right: we
refer to the former as the non-trivial compound lottery and to the latter as the trivial compound
lottery.1⁵ Following these valuations, for each compound scenario, we elicit the subject’s belief of
the “exact” chance that the drawn card is purple (incentivized with binarized scoring, $5 prize) and
the cognitive uncertainty about this belief. Subjects then complete two final valuation tasks—for
another 50/50 lottery and another ambiguous bet.
The compound bets in Figure 7 correspond to our “Percents” framing. For robustness, an equal

number of subjects take an otherwise identical “Graphical” framing, which defines the compound
scenarios using smaller numbers with visual aids (5 cards instead of 50, and instead of percent-
ages, the screen displays 1 purple card and 4 green cards; see Figure Online-A.58 in the Online

1⁵The experiment also included a third compound risk, which also reduces to a 50/50 lottery but is unusual as the
presence of a second stage is contingent on the initial draw; we call it the draw-again compound lottery. As we discuss
below, this was misunderstood by several subjects and is discussed separately.
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Figure 7: Compound risks, as phrased in the Main (percents) treatment. Both scenarios yield a
50/50 distribution over the card color, though this is less obvious in the left panel than the right.

Figure 8: The One-Stage Mirror treatment counterparts of the compound risks in Figure 7.

Appendix).

One-stage Mirror. Is the source of complexity in compound lotteries the computation needed to
reduce the lottery or the presence of multiple stages? To test this, we introduce a One-Stage Mirror
treatment that aims to preserve the computational structure with only one stage of risk. Figure 8
shows the mirror counterparts of our main compound lotteries: instead of randomly choosing a
deck, decks are now combined, making it a one-stage lottery. Aside from this adjustment, the one-
stage treatment is identical to the Percent framing of the Main treatment. Testing how cognitive
uncertainty and complexity aversion vary in this treatment is informative of whether the source of
complexity is the computation or the conceptual difficulty of dealing with multiple stages.

Implementation. 994 subjects participated through Prolific in May 2024, with 397 subjects in
each version of the Main treatments and 200 subjects in the One-Stage Mirror, and was pre-
registered.1⁶ As before, following our pre-registration, the main body of the paper focuses only
on the subjects who pass our comprehension quiz on the first attempt (approximately 70% of sub-
jects across treatments), while Appendix C replicates our figures and tables for the entire sample;
like before, results are very similar.

1⁶Median completion time was slightly over 12 minutes. As in Experiment A, subjects received $3 for participation,
and 10% of subjects were eligible for a bonus payment based on their answer to one of the main tasks (drawn at
random). The average bonus paid was $10.57, with a maximum potential bonus of $30. The protocol can be found at
https://aspredicted.org/n7p4-6m3y.pdf.
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5.2 Results

Because behavior in the Percent and Graphical framing of the Main treatment was very similar, we
analyze them jointly.1⁷ Moreover, we focus on the two traditional compound lotteries and discuss
the behavior with the third one (draw-again) in Appendix D; this is because a substantial fraction
of subjects appear to have misunderstood the question (in the direction of our desired results, but
possibly spuriously), making interpretation more difficult.

Compound Aversion, Cognitive Uncertainty, and Ambiguity. As we did with the other experi-
ments, we begin with the raw data: The left panel of Figure 9 depicts the CDFs of the values of the
trivial and non-trivial compound lotteries and the average value of 50/50 lotteries. Unsurprisingly,
given the extensive evidence on compound aversion, the non-trivial compound lottery is signifi-
cantly undervalued: on average, by $2.56 (complexity aversion is strictly negative for 16%, zero for
21%, and strictly positive for 63%). The trivial compound lottery shows no sign of such aversion
(compound aversion is 19 cents on average; it is strictly negative for 31%, zero for 33%, and strictly
positive for 36%). This is intuitive, as it is immediate to see that the trivial compound lottery gives
a 50% chance of winning. Indeed, the two compound lotteries are also very different in cognitive
uncertainty, which is much higher for the non-trivial one (averages are 42% vs. 26%).
As in previous experiments, we can define complexity aversion as the difference between the

average value of 50/50 lotteries and the value of the complex object, the compound lottery; here,
complexity aversion is simply compound aversion. In this experiment, we can also define relative
complexity aversion: the value difference between the trivial compound lottery and the non-trivial
one. This captures changes in value due to the added complexity holding constant the number of
stages. Unsurprisingly, given the left panel of Figure 9, relative complexity aversion is similar to
complexity aversion, with an average of $2.37. The right panel of Figure 9 gives the histogram of
complexity aversion for the non-trivial compound lottery and relative complexity aversion.
Like in our previous experiments, we can test the relation of complexity aversion with both

cognitive uncertainty and ambiguity aversion; we can do the same with relative complexity aver-
sion. These appear in Table 3: Columns (1) and (2) report the same constrained regressions we
run for the other experiments using complexity aversion; Columns (3) and (4) repeat this focusing
only on the non-trivial compound lottery. Columns (5) and (6) run similar regressions on relative
complexity aversion using relative cognitive uncertainty (the increase in cognitive uncertainty from
the trivial to the non-trivial compound lottery; these are regular, non-constrained regressions, as
the issue of spurious correlation does not apply).

1⁷For each of the trivial and non-trivial compound bets, neither a Kolmogorov-Smirnov test of distributions nor a
Wilcoxon ranksum test reject the null hypothesis of equality across the framing (p-values > 0.54 in all cases). Similarly,
Chow tests support pooling these two framings in all the regressions of Table 3 (p-values > 0.24 in all columns).
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Figure 9: Left panel: CDFs of dollar value of the non-trivial and trivial compound lotteries and
average value of 50/50 lottery. Right panel: histogram of complexity aversion (value difference of
50/50 lotteries and non-trivial compound lottery) and relative complexity aversion (value differ-
ence of the trivial and non-trivial compound lottery).

Our results confirm the findings in Experiments A and B. The interaction of compound and am-
biguity aversion affects complexity aversion. Results for relative complexity aversion are similar but
stronger in magnitude and significance: this may be a more appropriate measure, probably because
relative cognitive uncertainty provides a “normalization” of a subjective measure. Again, the cor-
relation with ambiguity aversion is significantly higher when cognitive uncertainty is high rather
than low (p-values .0407, 0.0330, and 0.0158 for regressions (1), (3), (5)). The same conclusion
applies to continuous interaction. While these results confirm those of the previous experiments,
here ambiguity aversion maintains an effect even for subjects with low cognitive uncertainty—the
coefficient is about half but remains significant. Ambiguity aversion is also significant by itself in
continuous interactions.
These results have implications for interpreting the interaction between compound lotteries and

ambiguity aversion. Like the previous literature, we find a strong correlation between ambiguity
aversion and compound aversion; for example, if we run a constrained regression similar to model
(3) on Table 3 without separating High and Low cognitive uncertainty, the coefficient on Ambiguity
aversion is .51 (std. err. .06).1⁸ Our results suggest that it is subjects with high cognitive uncertainty

1⁸If we construct variables using different questions for ambiguity and complexity aversions (instead of using con-
strained regression), we obtain a raw correlation of .44 between compound and ambiguity aversion, not dissimilar
from results in the literature (e.g., Chapman et al. 2023).
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Table 3: Experiment C: The Role of Ambiguity and Cognitive Uncertainty

Complexity Aversion Complexity Aversion Relative Complexity Aversion
(Trivial and non-Trivial) (non-Trivial only) (non-Trivial only)
(1) (2) (3) (4) (5) (6)

High Cognitive Uncertainty:

Ambiguity Aversion .39*** .60*** .53***
(.05) (.08) (.09)

Low Cognitive Uncertainty:

Ambiguity Aversion .21*** .35*** .26***
(.06) (.08) (.07)

Ambiguity Aversion .20*** .40*** .31***
(.05) (.08) (.06)

CU -.89 -.37 -1.12
(.61) (.74) (1.05)

Ambiguity Aversion × CU .32*** .26* .60***
(.12) (.15) (.20)

Constant 2.54*** 2.91*** 2.18*** 2.60*** 3.04** 3.08***
(.60) (.62) (.75) (.75) (1.26) (1.27)

Observations 1116 1116 558 558 558 558
Controls Y Y Y Y Y Y

Notes: Robust standard errors in parentheses, clustered by subject in models (1) and (2), where each subject appears
in two observations.** 𝑝 < .05, *** 𝑝 < .01. (1)-(4) are obtained from constrained regressions. In (5)-(6), CU refers
to relative cognitive uncertainty. Controls include beliefs and a dummy for each compound lottery; in model (1), (3),
(5), also a dummy for Cognitive Uncertainty above the median of the CU distribution.

that primarily drive this interaction, even though some effect does exist even for subjects with low
cognitive uncertainty.

One-Stage Treatment. In our one-stage treatment, subjects faced questions that were computa-
tionally identical but involved only one stage of randomization. Does this eliminate aversion?
In the one-stage treatment, aversion is sharply reduced but does not disappear. The left panel

of Figure 10 shows the analogue of the left panel of Figure 9 for this treatment: the CDF of dollar
values of 50/50 lotteries and the two “compound” lotteries (which are no longer compound; we
call them “pseudo-compound”). The right panel of Figure 10 compares CDFs of the dollar values
of our main lottery of interest, the non-trivial compound lottery, in the One-Stage and the Main
treatments (focusing on the Percent framing as it is the direct correspondent). The aversion to
“pseudo-compound” is much smaller than that to compound. However, it has not disappeared:
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(a) One-Stage Treatment: CDFs of dollar values of
the trivial and non-trivial compound bets, alongwith
average value of 50/50 lotteries.

(b) CDF of dollar values of the non-trivial compound
bets in the One-Stage treatment versus the Percent-
ages version of the Main treatment.

Figure 10: The value of compound bets and 50/50 lotteries in the Mirror treatment.

average aversion is $1.4 (vs. $2.5 before), and 47% of subjects still have a strictly positive measure.
Notably, this is associated with a reduction in cognitive uncertainty: average cognitive uncertainty
is 23% for the non-trivial pseudo-compound, against 42% for the equivalent in our Main treatment.
These results appear in line with the following interpretation. The presence of two stages adds

to the complexity of compound lotteries. Once we eliminate them, the aversion is reduced sharply
(by approximately half) but does not disappear—because not all complexity is eliminated.

Summary of Results. Experiment C suggests that the same key forces we documented in previous
experiments may be at play in the evaluation of compound lotteries as well: once again, we find that
subjects undervalue complex options and that this effect is related to the interaction of subjective
perception of complexity as measured by cognitive uncertainty with ambiguity aversion.
At the same time, our results are informative on compound lotteries per se. They show that

the well-known correlation with ambiguity aversion appears primarily driven by subjects with high
cognitive uncertainty. A possible explanation is that, like in our other experiments, this is strongly
related to the inherent complexity of compound lotteries; indeed, the presence of multiple stages
appears to be a source of complexity. Our one-stage treatment seems to confirm this. On the one
hand, it shows that once we eliminate the multiple stages, cognitive uncertainty diminishes, and
so does aversion. At the same time, aversion is not fully eliminated, even though our "pseudo-
compound" lottery is no longer a compound lottery.
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6 Our Mechanism in the data of Enke and Graeber (2023)1⁹

If our mechanism is as prevalent as our results suggest, it should also manifest in other datasets
as well. We test for it in the data of Enke and Graeber (2023), which includes two experiments
that elicit the dollar value of several risky lotteries and the cognitive uncertainty for each valuation.
Enke and Graeber (2023) shows that cognitive uncertainty induces “attenuation:” when CU is high,
lottery values are less responsive to parameters and are attenuated towards intermediate options.
If our mechanism is also at play, high CU should also correspond to lower values of bets overall.
This is precisely what we find.

Data. Of the many experiments and tasks reported in Enke and Graeber (2023), only two include
dollar valuations and are of interest to our goals: Risk A and Risk B, both of which measured i) the
certainty equivalents of binary lotteries and ii) the cognitive uncertainty about this valuation—
how confident participants are that the actual value is within a range of their choice. Lotteries
paid a prize with a given probability and zero otherwise; both prizes and probabilities were chosen
randomly from a set of prizes and a set of probabilities, where possible probabilities were symmetric
around 0.5 (drawing probability 𝑝 was equally likely as (1 − 𝑝)).2⁰ However, the two experiments
differ in many implementation details, elicitation methods, and pools;21 documenting our results
in both datasets would point to their robustness. In the original datasets, CU is normalized to be
from 0 to 1, while certainty equivalents are normalized as a percentage of the winning prize. In
addition, both experiments include a Complex manipulation: in Risk A, this involved presenting
win probabilities as an algebraic expression and was conducted between subjects; in Risk B, this
involved presenting lotteries as compound lotteries and was run within-subjects; our analysis below
is run both excluding and including complex manipulations. We refer to Enke and Graeber (2023)
for additional details.

Tests. The main finding of Enke and Graeber (2023) is that when cognitive uncertainty is high,
decisions are heavily attenuated functions of objective probabilities, and values are attenuated to-
wards those of an intermediate option, the 50/50 lottery. To test our mechanism, we can evaluate
whether cognitive uncertainty further lowers the values in addition to attenuation. In principle, this

1⁹We thank Ben Enke for his valuable help analyzing the data discussed in this section and for suggesting the exact
regressions to run.
2⁰Specifically, in Risk A prizes are chosen uniformly from {15, 16, . . . , 25} and probabilities (percentages) from

{1, 5, 10, 25, 35, 50, 65, 75, 90, 95, 99}. In Risk B, these were𝑦 = {15, 20, 25} and {5, 10, 25, 50, 75, 90, 95}, respectively.
In addition, in Risk B, half of the questions involved losses, chosen from {−15,−20,−25}.
21Risk A involved 500 subjects on Prolific, elicited certainty equivalents using the BDM technique of Healy (2018),

used lotteries with only gains, and measured cognitive uncertainty as the probability that the true lies within a given
range. Risk B involved 700 on Amazon Mechanical Turk, used MPLs, studied lotteries with gains but also losses, and
measured CU by asking subjects to indicate the range within which they were certain the true value lies.
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Table 4: Effect of cognitive uncertainty (CU) on normalized certainty equivalents (CE)

Risk A Risk B

(1) CE (2) CE (3) CE (4) CE (5) CE
CU -15.17 *** -11.36*** -12.21***

(3.57) (2.83) (4.62)
CU × Baseline -15.94*** -8.54***

(2.94) (2.55)
CU × Complex -16.71*** -9.14***

(2.28) (2.81)
constant 59.73*** 59.42*** 6.16*** 6.09*** -34.14***

(.96 ) (.74) (.50) (.46) (.84)

N 4,524 6000 2,890 4,200 1,328
Complex variation No Yes No Yes No
Fixed Effects Yes Yes Yes Yes Yes
Gains/Losses Gains Gains Gains/Losses Gains/Losses Losses

Notes: CU is normalized to be from 0 to 1. Normalized certainty equivalents are computed as the certainty
equivalent as a percentage of the winning prize of the lottery. Robust standard errors in parenthesis clus-
tered at the individual level, *** p < 0.01. Regressions include problem and individual fixed effects.

analysis may be complicated by the interaction with attenuation: for high probabilities, attenuation
already induces lower values, making it difficult to disentangle the effects of our mechanism; for
low probabilities, attenuation induces higher values, countering the effect we aim to document.
Luckily, this is not a concern in this data: because winning probabilities are designed to be “bal-
anced” around the intermediate point of 0.5, for any high probability where attenuation induces
a decrease in value, there is a counterpart low probability where attenuation induces an increase
in value. We can then simply regress certainty equivalents on cognitive uncertainty on the whole
dataset, knowing that if only attenuation were at play, we should find no effects. Additional effects
must, therefore, be due to external forces.

Results. Columns (1) and (3) in Table 4 show the effect of cognitive uncertainty on normalized
certainty equivalents in the standard-lottery data of Risk A and Risk B experiments. Results are
clear: there is a very strong and very significant effect of cognitive uncertainty in lowering the
value of lotteries—as predicted by our mechanism. Note the effect size: in Risk A, going from a
CU of 0 to 1 lowers the normalized certainty equivalent of 15 percentage points of the winning
prize. Since average normalized certainty equivalents in that experiment are around 55% of the
winning prize, this means that certainty equivalents decrease by about 27%. The effect is not only
statistically significant, it is also very large.
Columns (2) and (4) add the data from the complex variations of both experiments and find

effects remarkably similar in magnitude per unit of cognitive uncertainty—even though, as shown
by Enke and Graeber (2023), cognitive uncertainty is much higher in complex variations.
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One possible concernwith this analysis is that attenuationmay still partially explain these results
if some subjects attenuate towards zero instead of 50/50. Fortunately, we can test this by focusing
exclusively on lotteries involving losses in Risk B: if the culprit is attenuation towards zero, cognitive
uncertainty should have a positive effect here; if caution is at play, the effect should remain negative.
Column (5) of Table 4 runs our regression focusing on lotteries with only losses and shows that our
effects remain robustly negative and of similar magnitude even in this case.
Overall, this analysis shows how our mechanism appears to be at play also in two preexist-

ing datasets, emerging robustly despite the differences in many experimental details, pools, and
approaches.

7 Discussion

This paper demonstrates that most individuals undervalue options they perceive as complex. We es-
tablish this in three large-scale, preregistered experiments examining updating, visual perception,
and compound lotteries. We propose a mechanism suggesting that individuals react with caution to
cognitive uncertainty induced by complexity. Supporting this, we find that aversion to complexity
increases with the interaction of cognitive uncertainty and ambiguity aversion. We also validate
this mechanism using the data from Enke and Graeber (2023), showing that higher cognitive un-
certainty corresponds not only to attenuation, but also to lower valuations.

Implications. Our findings have several implications. First, they may explain certain market be-
haviors, such as why individuals avoid complex options—even when they appear advantageous to
analysts—or abstain from choosing altogether. They may also shed light on why marketing cam-
paigns often emphasize the simplicity of the offerings (e.g., "a simple plan").
Second, understanding attitudes toward complexity is crucial in policy design. When individ-

uals are complexity-neutral, governments might present carefully tailored but intricate options to
address specific needs. However, as our findings show, if individuals are complexity-averse, overly
complex options may remain unused. Recognizing when and how complexity aversion applies
allows for refined policy design that avoids these pitfalls. For instance, our results suggest policy-
makers should aim to minimize cognitive uncertainty in available choices.
Third, our results indicate that popularmodels used to study decision-making under complexity—

such as rational inattention and cognitive noise models—may overlook a critical component: the
significant effect of aversion to complexity and cognitive uncertainty on valuation and choice.
Fourth, our findings have implications for models of updating and compound lotteries. They

suggest that many models of non-Bayesian behavior may be missing an important aspect: aversion
to the complexity involved in updating. Moreover, they support the view that compound lottery
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aversion might be rooted in an aversion to the complexity of the compounded structure itself.

Interpretation. While our mechanism suggests that caution arises in response to complexity, in-
terpreting the relationship with ambiguity aversion is more nuanced. Complexity may generate
ambiguity, and our results may be a form of ambiguity aversion; if so, ambiguity could be more
prevalent than assumed, emerging in updating and perceptual tasks alike. Alternatively, the pri-
mary driver could be an aversion to complexity itself, with ambiguous tasks like Ellsberg bets merely
representing extreme cases of complexity. Or, both ambiguity and complexity aversion might reflect
a broader tendency toward caution. We hope future research will clarify which of these interpre-
tations holds.

Models? While developing a full model of caution in the face of complexity is beyond the scope of
this paper, we can briefly discuss possible approaches. A natural starting point is to define ameasure
of the complexity of an alternative and construct a model of “first-order” complexity aversion that
subtracts a complexity cost from the Expected Utility of the option—as in existing approaches in
the literature such as Puri (forthcoming) and Gabaix and Graeber (2023). For example, given a set
of states Ω and consequences 𝑋 , for any act 𝑓 ∈ 𝑋Ω, define 𝑘 : 𝑋Ω → R a measure its perceived
complexity by the individual, captured by cognitive uncertainty. Then, for some utility 𝑢 : 𝑋 → R,
prior 𝜋 on Ω, and 𝜃 ∈ R, any act 𝑓 ∈ 𝑋Ω is evaluated by

𝑉 (𝑓 ) = E𝜋 [𝑢 (𝑓 )] − 𝜃 𝑘 (𝑓 ).

In this simple functional form, the parameter 𝜃 captures the degree of aversion towards complexity.
If 𝑘 (𝑓 ) relates to cognitive uncertainty and 𝜃 correlates with ambiguity aversion, as is natural, then
a model of this kind would predict our empirical results that the undervaluation of complex options
is strongly related to the interaction of the two. As it is well-known, however, models of this type
may generate violations of first-order stochastic dominance unless properly disciplined.
Alternatively, one may view complexity as generating hard-to-interpret messages and develop

a model where individuals face no ambiguity ex-ante but receive information with ambiguous in-
terpretation, leading to uncertainty aversion. This generates a model of second-order complexity
aversion that could resemble the Smooth Ambiguity model of Klibanoff et al. (2005), but with am-
biguity concerning the joint probability between messages and states, reminiscent of models of
ambiguous information like Epstein and Halevy (2024). A natural avenue of further research is to
develop these models and study their implications.

Preferences Matter After All? We conclude with a conceptual point. Recent research has sug-
gested that many behavioral phenomena typically attributed to preferences may stem from cogni-
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tive factors. For instance, Enke and Graeber (2023) shows that cognitive uncertainty and atten-
uation can produce several well-known biases in behavioral economics. Our results complement
this perspective by adding that valuations are also affected by how individuals cope with this cog-
nitive uncertainty—a specific aspect of preferences that interacts with, but is distinct from, purely
cognitive aspects.
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Appendix

A Constrained regressions

In this appendix, we elaborate further on constrained regression models described above. Consider
first a discrete model like (1) from Table 1, where the coefficient on Ambiguity Aversion depends
on a discrete CU category (high vs. low).22 Let 1ℓ (1ℎ) be a dummy variable indicating an obser-
vation where a subject expresses low (respectively, high) cognitive uncertainty. Suppose we aim to
estimate:

CA = 𝛼 + 𝛽ℓ (1ℓAA) + 𝛽ℎ (1ℎAA) + ®𝛾 · controls + error,

where the controls include the dummy 1ℎ and possibly other variables (e.g., elicited belief about the
probability of winning in that task). To test whether the relationship between complexity aversion
and ambiguity aversion is diminished for low-CU subjects, we would like to check whether 𝛽ℓ is
smaller than 𝛽ℎ. To perform this estimation, recall that CA = L − U and AA = L − E. Making these
substitutions above and solving for U, we find

U = −𝛼 + (1 − 𝛽ℓ) (1ℓL) + 𝛽ℓ (1ℓE) + (1 − 𝛽ℎ) (1ℎL) + 𝛽ℎ (1ℎE) − ®𝛾 · controls − error.

Hence, we can run the constrained regression

U = 𝛼′ + 𝛽′1ℓ (1ℓL) + 𝛽′2ℓ (1ℓE) + 𝛽′1ℎ (1ℎL) + 𝛽′2ℎ (1ℎE) + ®𝛾 ′ · controls + error′

using the constraints 𝛽′1ℓ + 𝛽′2ℓ = 1 and 𝛽′1ℎ + 𝛽′2ℎ = 1. Then our main coefficients of interest are
found via 𝛽ℓ = 𝛽′2ℓ and 𝛽ℎ = 𝛽′2ℎ, while 𝛼 = −𝛼′ and ®𝛾 = −®𝛾 ′.
Next, consider a continuous model like (2) from Table 1.23 Suppose we want to study if ambi-

guity aversion and cognitive uncertainty impact complexity aversion separately and through their
interaction:

CA = 𝛼0 + 𝛼1AA + 𝛼2CU + 𝛽 (CU ∗ AA) + ®𝛾 · controls + error.

To perform this estimation, we again make the substitutions CA = L − U and AA = L − E and solve
for U to find:

U = −𝛼0 + (1 − 𝛼1)L + 𝛼1E − 𝛼2CU − 𝛽 (L ∗ CU) + 𝛽 (E ∗ CU) − ®𝛾 · controls − error.

22Models (1) and (3) from Table 3 are similar, replacing only 𝑈 with the value of the compound bets. Model (1)
from Table 2 is also of this form, only replacing high/low CU with high/low uncertainty and 𝑈 with the value of the
perceptual bets.
23Again, similar analysis holds for model (2) in Table 2 and models (2) and (4) in Table 3.
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Then, we can run the constrained regression

U = 𝛼′
0 + 𝛼′′

1L + 𝛼′
1E + 𝛼′

2CU + 𝛽′′(L ∗ CU) + 𝛽′(E ∗ CU) + ®𝛾 ′ · controls + error′,

using the constraints 𝛼′
1 + 𝛼′′

1 = 1 and 𝛽′ = −𝛽′′. The interaction term of interest is 𝛽 = 𝛽′, while
we find the other terms using 𝛼0 = −𝛼′

0, 𝛼1 = 𝛼′
1, 𝛼2 = −𝛼′

2, and ®𝛾 = −®𝛾 ′.

B Additional figures

We include here additional figures referenced in the text.
Figure 11 displays the CDFs of maximum values for the 50/50 lotteries and updating bets in

Experiment A. Figures 12 and 13 display the CDFs of values for the perceptual bets and lotteries,
respectively, in Experiment B.

Figure 11: CDFs of maximum values for the 50/50 lotteries and updating bets.

34



Figure 12: CDFs of values for perceptual bets as a function of difficulty.

Figure 13: CDFs of values for lotteries as a function of difficulty (Experiment B).
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C Including all subjects

As required by our pre-registration, our analysis in the main body of the paper includes only subjects
who respond correctly to our comprehension quiz on the first try. In what follows, we replicate
our core results with the entire subject pool. The results are very similar overall. Figures 14-16,
and Table 5 replicates the corresponding ones in Experiment A; Figure 17 and Table 6 those in
Experiment B; and Figure 18-19 and Table 7 those in Experiment C.

Table 5: Counterpart to Table 1 with all sample, Experiment A: The Role of Ambiguity and Cognitive
Uncertainty

Complexity Aversion
(1) (2)

High Cognitive Uncertainty:

Ambiguity Aversion .31***
(.05)

Low Cognitive Uncertainty:

Ambiguity Aversion .18***
(.04)

Ambiguity Aversion .18***
(.05)

CU .15
(.57)

Ambiguity Aversion × CU .18*
(.10)

Constant 2.09*** 2.03***
(.55) (.63)

Observations 986 986
Controls Y Y

Notes: Each updating bet is an observation, with robust standard errors clustered by subject in
parentheses. * 𝑝 < .1,*** 𝑝 < .01. Both (1) and (2) are obtained from constrained regressions
following the method previously explained. Controls include beliefs about probabilities and a
dummy for each updating task and, in model (1), a dummy for High Cognitive Uncertainty
(being in the top half of the CU distribution).
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Table 6: Counterpart to Table 2 with all sample, Experiment B: The Role of Ambiguity

Complexity Aversion
(1) (2)

High Uncertainty:

Ambiguity Aversion .54***
(.08)

Low Uncertainty:

Ambiguity Aversion .23**
(.10)

Ambiguity Aversion .12
(.16)

Uncertainty 5.75*** 4.87***
(2.10) (1.70)

Ambiguity Aversion × Uncertainty .65**
(.31)

Constant -3.65*** -3.52***
(.81) (0.83)

Observations 996 996
Controls Y Y

Notes: Each perceptual bet is an observation, with robust standard errors clustered by subject
in parentheses. *** 𝑝 < .01. Both (1) and (2) are obtained from constrained regressions,
following the method explained earlier. Controls include a dummy for each updating of the
hard perceptual tasks and, in model (1), a dummy for high uncertainty (i.e., in the top half of
the uncertainty distribution).
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(a) CDFs of the value of updating bets and the average value of 50/50 lotteries, with the sample
means marked.

(b) Frequency-weighted scatter plot of the average
values of updating bets and the 50/50 lotteries.

(c) Histogram of complexity aversion (the differ-
ence between the average value of updating bets and
50/50 lotteries)

Figure 14: Three graphs on the value of updating bets and 50/50 lotteries in the Main treatment
of Experiment A. Counterpart of Figure 3 with all subjects.

38



Figure 15: Counterpart of Figure 4 with all subjects. Complexity aversion in 4 subgroups: top
and bottom quartiles of Cognitive Uncertainty, divided based on (strict) Ambiguity Aversion vs.
Ambiguity Neutrality/Seeking.

(a) Mirror Treatment: CDFs of dollar values of up-
dating bets and average value of 50/50 lotteries.

(b) Mirror Treatment: Scatter Plot of average dollar
value of updating bets and 50/50 lotteries.

Figure 16: Counterpart of Figure 5 with all subjects. The value of updating bets and 50/50 lotteries
in the Mirror treatment.
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Figure 17: Counterpart of Figure 6 with all subjects. Two graphs on the value of hard perceptual
bets and 50/50 lotteries for observations with confidence below the median. Left panel: CDFs of
dollar value of hard perception bets and average value of 50/50 lottery. Right panel: histogram of
complexity aversion (difference between value of hard perceptual bets and average value of 50/50
lotteries).
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Figure 18: Counterpart of Figure 9 with all subjects. Left panel: CDFs of dollar value of the non-
trivial and trivial compound lotteries and average value of 50/50 lottery. Right panel: histogram
of complexity aversion (difference between the value of 50/50 lotteries and non-trivial compound
lottery) and relative complexity aversion (difference between the value of the trivial and non-trivial
compound lottery).
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(a) One-Stage Treatment: CDFs of dollar values of
the trivial and non-trivial compound bets, alongwith
average value of 50/50 lotteries.

(b) CDF of dollar values of the non-trivial compound
bets in the One-Stage treatment versus the Percent-
ages version of the Main treatment.

Figure 19: Counterpart of Figure 10with all subjects. The value of updating bets and 50/50 lotteries
in the Mirror treatment.
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Table 7: Counterpart to Table 3 with all sample, Experiment C: The Role of Ambiguity and Cognitive
Uncertainty

Complexity Aversion Complexity Aversion Relative Complexity Aversion
(Trivial and non-Trivial) (non-Trivial only) (non-Trivial only)
(1) (2) (3) (4) (5) (6)

High Cognitive Uncertainty:

Ambiguity Aversion .44*** .59*** .45***
(.05) (.06) (.08)

Low Cognitive Uncertainty:

Ambiguity Aversion .19*** .28*** .18***
(.04) (.07) (.06)

Ambiguity Aversion .17*** .28*** .24***
(.04) (.06) (.05)

CU -.89* -.72 -0.53
(.52) (.65) (1.22)

Ambiguity Aversion × CU .40*** .44*** .50**
(.10) (.12) (.22)

Constant 2.32*** 2.68*** 1.86*** 2.38*** 1.96* 1.91*
(.53) (.58) (.65) (.71) (1.08) (1.08)

Observations 1558 1558 794 794 794 794
Controls Y Y Y Y Y Y

Notes: Robust standard errors in parentheses, clustered by subject in models (1) and (2), where each compound lottery
(trivial and non-trivial) is an observation.** 𝑝 < .05, *** 𝑝 < .01. (1)-(4) are obtained from constrained regressions
following the method explained earlier. In (5)-(6), CU refers to relative cognitive uncertainty. Controls include beliefs
and a dummy for each compound lottery; in model (1), (3), (5), also a dummy for High Cognitive Uncertainty (being
in the top half of the CU distribution).
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D The Third Compound Lottery in Experiment C

As we discussed above, Experiment C also included a third type of compound lottery, which we
call “draw-again.” Subjects were told: “A deck contains 3 cards: one Purple, one Green, and one
Orange. The computer shuffles the deck and draws a card:

• If the drawn card is Purple or Green it stops.

• If it is Orange, it discards that card and draws again from the deck.”

Subjects were then asked for their valuation of a $30 bet if the final card was Purple. (Figures
Online-A.63 and Online-A.64 in the Online Appendix show the screenshots.) This is a compound
lottery, but of a form very different from typical ones because the presence of a second stage is
contingent on a random event. We included it as an exploration because we thought it could be an
interesting and different type of non-trivial compound lottery.
Unfortunately, a large fraction of subjects seem to have misunderstood this question in a way

that makes the interpretation difficult. In particular, close to a third of our subjects in the main
treatment (171/558, even focusing on those that pass the comprehension quiz) report beliefs that
the probability of Purple in this question is around 1/3 (between 30 and 35). It looks like they
did not understand the possibility of a second draw and only considered the chances of Purple in
the first draw. Naturally, this leads them to report very low values for this bet. While this is in the
direction we are trying to demonstrate (people undervalue complex options), it seems to happen
for reasons unrelated to complexity aversion. For this reason, we are leaving this question aside.
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